PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae.

نویسنده

  • A Wach
چکیده

A PCR-method for fast production of disruption cassettes is introduced, that allows the addition of long flanking homology regions of several hundred base pairs (LFH-PCR) to a marker module. Such a disruption cassette was made by linking two PCR fragments produced from genomic DNA to kanMX6, a modification of dominant resistance marker making S. cerevisiae resistant to geneticin (G418). In a first step, two several hundred base pairs long DNA fragments from the 5'- and 3'- region of a S. cerevisiae gene were amplified in such a way that 26 base pairs extensions homologous to the kanMX6 marker were added to one of their end. In a second step, one strand of each of these molecules then served as a long primer in a PCR using kanMX6 as template. When such a LFH-PCR-generated disruption cassette was used instead of a PCR-made disruption cassette flanked by short homology regions, transformation efficiencies were increased by at least a factor of thirty. This modification will therefore also help to apply PCR-mediated gene manipulations to strains with decreased transformability and/or unpredictable sequence deviations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PCR- and ligation-mediated synthesis of marker cassettes with long flanking homology regions for gene disruption in Saccharomyces cerevisiae.

We developed a novel method for synthesizing marker-disrupted alleles of yeast genes. The first step is PCR amplification of two sequences located upstream and downstream of the reading frame to be disrupted. Due to the addition of non-specific single A overhangs by Taq DNA polymerase, each PCR product can be ligated with a marker DNA which has T residues at its 3' ends. After amplification of ...

متن کامل

Disruption of six Saccharomyces cerevisiae ORFs on chromosome XII results in three lethal disruptants.

Six ORFs of unknown function from the left arm of chromosome XII of Saccharomyces cerevisiae were chosen for a reverse genetic approach to provide materials to assist in assignment of function. A two-step PCR using long-flanking homology was employed to amplify disruption cassettes consisting of a kanMX gene as selectable marker flanked by 250-350 bp long regions homologous to the target gene. ...

متن کامل

RT-PCR method for selective detection of silent gene transcripts in silencing mutants in homothallic strains of Schizosaccharomyces pombe.

Here we describe a method that allows selective detection of silent copy transcripts in homothallic strains of Schizosaccharomyces pombe in the presence of the active cassettes. The method involving RT-PCR (reverse transcriptase polymerase chain reaction) exploits our observation that the silent copy transcripts extend beyond the regions of homology to the flanking sequences specific for the do...

متن کامل

Precise gene disruption in Saccharomyces cerevisiae by double fusion polymerase chain reaction.

We adapted a fusion polymerase chain reaction (PCR) strategy to synthesize gene disruption alleles of any sequenced yeast gene of interest. The first step of the construction is to amplify sequences flanking the reading frame we want to disrupt and to amplify the selectable marker sequence. Then we fuse the upstream fragment to the marker sequence by fusion PCR, isolate this product and fuse it...

متن کامل

Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions.

Disruption of newly identified genes in the pathogen Candida albicans is a vital step in determination of gene function. Several gene disruption methods described previously employ long regions of homology flanking a selectable marker. Here, we describe disruption of C. albicans genes with PCR products that have 50 to 60 bp of homology to a genomic sequence on each end of a selectable marker. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Yeast

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 1996